Determining the Optimal Search Area for a Serial Criminal

Towson University Applied Mathematics Laboratory

Dr. Mike O'Leary

Modeling and Simulation Technical Working Group Jersey City, NJ March 2006

Applied Mathematics Laboratory

- Looks for undergraduate research projects in mathematics.
- Established at Towson University in 1980.
- We form teams of 2-6 undergraduate students, led by 1-2 faculty members and potentially one M.S. student.
- Usually, we work on one research problem each year.

Recent Projects

- Carroll Area Transit System (2004-2005)
- Baltimore County Department of Environmental Planning and Resource Management (2003-2005)
- Baltimore City Fire Department (2002-2003)

2005-06 Participants

- Dr. Coy L. May, Dr. Andrew Engel, Dr. Mike O'Leary
- Paul Corbitt
- Brandie Biddy, Brooke Belcher, Greg Emerson, Laurel Mount, Ruozhen Yao, Melissa Zimmerman

The Question

• What is the optimal search area for a serial criminal?

Centrographic Measures

- Centroid
- Center of minimum distance
- Center of the circle
- Harmonic mean
- Geometric mean

Probability Distance Strategies

- Suppose we have a series of linked crimes committed at points $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n$.
- For any point \vec{z} , the relative likelihood function $\sigma(\vec{z})$ is

$$\sigma(\vec{z}) = \sum_{i=1}^{n} f(d(\vec{x}_i, \vec{z}))$$

Here f is a probability density function and $d(\vec{x}_i, \vec{z})$ is the distance between \vec{x}_i and \vec{z} .

Probability Distance Strategies

- Rossmo $\sigma(\vec{z}) = k \sum_{i=1}^{n} \frac{\phi}{(|x_{i}^{(1)} - z^{(1)}| + |x_{i}^{(2)} - z^{(2)}|)^{f}} + k \sum_{i=1}^{n} \frac{(1 - \phi) B^{g - f}}{(2B - |x_{i}^{(1)} - z^{(1)}| - |x_{i}^{(2)} - z^{(2)}|)^{g}}$
- Here k, B, f, g are all empirical constants.
- $\phi = 0$ if \vec{z} is in a buffer zone of size *B* around \vec{x}_i , while $\phi = 1$ if \vec{z} is outside the buffer zone.

Our Approach

- Postulate: There is an *a priori* function $P(\vec{x}; \vec{z}, \vec{\beta})$ that gives the probability that an offender with anchor point \vec{z} commits a crime at the point \vec{x} .
 - $\vec{\beta} \in \mathbb{R}^k$ represents additional parameters.
 - Both \vec{z} and $\vec{\beta}$ are unknown.
- Given: A series of crimes committed at points $\vec{x}_1, \vec{x}_2, \cdots \vec{x}_n$.
- What is the best estimate of the anchor point \vec{z} ? What is the best estimate of $\vec{\beta}$?

Maximum Likelihood Estimate

• The maximum likelihood estimate for \vec{z} is

$$\vec{z} = \arg_{\vec{z}} \max \prod_{i=1}^{n} P(\vec{x}_i; \vec{z}, \vec{\beta})$$

• We only assume that $P(\vec{x}; \vec{z}, \vec{\beta})$ has a particular form, and then choose the parameter(s) that best match the data.

Advantages

- We can explicitly incorporate other features into the model by choosing $P(\vec{x}; \vec{z}, \vec{\beta})$ judiciously.
 - Geography
 - Demographics
 - Jurisdictional boundaries
 - Buffer zones
- The MLE method applies regardless of the precise form of $P(\vec{x}; \vec{z}, \vec{\beta})$.

Questions

- What is the right form for $P(\vec{x}; \vec{z}, \vec{\beta})$?
 - Ideally, this should be calculated from empirical data.
 - Are there reasonable choices?
 - Start with the simplifying assumption: geography is homogeneous.

Gaussian Distribution

If we assume P is Gaussian:

$$P(\vec{x};\vec{z},\sigma) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{|\vec{x}-\vec{z}|^2}{2\sigma^2}\right)$$

then the maximum likelihood estimate of \vec{z} is exactly the centroid.

• This remains true if we allow *P* to have variance $\vec{\sigma} = (\sigma_1, \sigma_2)$ and correlation ρ .

Exponential Distribution

• If we assume that *P* is exponential $P(\vec{x};\vec{z},\beta) = \frac{1}{2\pi\beta^2} \exp\left(\frac{|\vec{x}-\vec{z}|}{\beta}\right)$

then the maximum likelihood estimate for \vec{z} is the center of minimum distance.

• This remains true if $|\vec{x} - \vec{z}|$ is replaced by another distance function $d(\vec{x}, \vec{z})$.

Add some simple geographic features.

Geography

- Regions
 - Ω: Jurisdiction(s). Crimes and anchor points may be located here.
 - *E*: "elsewhere". Anchor points may lie here, but we have no data on crimes here.
 - W: "water". Neither anchor points nor crimes may be located here.
- In all other respects, we assume the geography is *homogeneous*.

Geography

- Let π be the distance dependence; for example we can use the Gaussian $\pi(s;\beta) = \exp(-s^2/\beta)$.
- We would like to define

$$P(\vec{x};\vec{z}) = \pi(|\vec{x} - \vec{z}|) = \exp\left(\frac{-|\vec{x} - \vec{z}|^2}{\beta}\right) \text{ if } \vec{x} \in \Omega, \vec{z} \in \Omega \cup E$$

 $P(\vec{x};\vec{z})=0$ if $\vec{x} \notin \Omega$ or $\vec{z} \in W$.

This needs to be normalized to become a probability distribution.

Geography

- Thus we have $P(\vec{x};\vec{z},\vec{\beta}) = \frac{\pi(|\vec{x}-\vec{z}|)}{\iint\limits_{\Omega} \pi(|\vec{y}-\vec{z}|) dy_1 dy_2} = \frac{\exp\left(\frac{-|\vec{x}-\vec{z}|^2}{\beta}\right)}{\iint\limits_{\Omega} \exp\left(\frac{-|\vec{y}-\vec{z}|^2}{\beta}\right) dy_1 dy_2}$
 - for $x \in \Omega$, $z \in \Omega \cup E$ and $P(\vec{x}; \vec{z}) = 0$ otherwise.

Implementation

- Given: a sequence of crimes committed at $\vec{x}_1, \vec{x}_2, \cdots \vec{x}_n$.
- Assumption: The distance dependence π is Gaussian.
- Assumption: Any two crime locations in Ω are equiprobable, and no (known) crimes occur outside Ω .
- Assumption: Any two anchor points in $\Omega \cup E$ are equiprobable, and no anchor points occur in W.

Implementation

• Find the choice of \vec{z} that solves $\pi(|\vec{x}_i - \vec{z}|)$ $\max_{\vec{z} \in \Omega \cup E} \prod_{i=1}^{n} \frac{1}{\iint \pi(|\vec{y} - \vec{z}|) dy_1 dy_2}$ Ω $\exp\left(-\frac{1}{\beta}\sum_{i=1}^{n}|\vec{x}_{i}-\vec{z}|^{2}\right)$ max $\iint_{\Omega} \exp\left(\frac{-|\vec{y}-\vec{z}|^2}{\beta}\right) dy_1 dy_2$ $\vec{z} \in \Omega \cup E$

Implementation

- The student team is:
 - Implementing this algorithm in Python, and
 - Linking the result to ArcGIS so that they can be used together.

Current Status

- Write geographic data from ArcGIS * Done into a file.
- Writing programs that can plot * Done points in ArcGIS.
- Reading geographic data from a file * Testing into Python.
- Re-writing the double integral as a * Done line integral to ease computation.

Current Status

- Numerical evaluation of the line * Testing integrals in Python.
- Python code to determine if a point * Testing is in a set.
- Choosing an algorithm to find the <u>* In progress</u> optimum.
- Implementing the optimization * Not yet algorithm in Python.

Current Status

- Integrating all of the parts into one * Not yet program.
- Testing.

* Not yet

 Compare results against empirical data (to be provided by Phil Canter, Baltimore County Police Department)

Pre-preliminary results

- Look at other distance-decay models.
 - We can explicitly model buffer zones with this method.

- When calculating a proposed anchor point, also compare the best estimates of the parameters $\vec{\beta}$ with historical / empirical data.
 - Bad fits of the parameters might suggest times when the model is inappropriate.

- Look directly at empirical data to determine the proper form for $P(\vec{x}; \vec{z}, \vec{\beta})$.
 - What is the "right" distance-decay function?
- Allow $P(\vec{x}; \vec{z}, \vec{\beta})$ to depend on more nuanced geographical features?
 - e.g. population density

$$P(\vec{x};\vec{z},\vec{\beta}) = \pi(|\vec{x}-\vec{z}|)\rho(\vec{x})$$

 Bayesian analysis may let us determine the probability density function for the criminal's anchor point, rather than a point estimate.

Questions?

Contact information: Dr. Mike O'Leary Director, Applied Mathematics Laboratory Towson University Towson, MD 21252

410-704-7457 moleary@towson.edu